

Thermochimica Acta 352-353 (2000) 255-264

thermochimica acta

www.elsevier.com/locate/tca

Heat capacities and thermal conductivity of ternary mixtures of water+ethanol+1,2-ethanediol between 75 and 350 K

Yong-Ji Song, Zhi-Cheng Tan^{*}, Shuang-He Meng, Ji-Biao Zhang

Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Received 2 June 1999; received in revised form 15 August 1999; accepted 9 September 1999

Abstract

The heat capacities of two concentrations of the ternary systems of 1,2-ethanediol, ethanol and water have been measured with an adiabatic calorimeter in the temperature range 80–350 K. These mixtures exhibited complex phase transitions in the solid state. A very broad heat capacity anomaly starting from 130 to 240 K was observed in the heat capacity curves and three transition peaks were found in this temperature range in addition to the melting peak. Experiments have demonstrated that the cooling rates had no obvious influence on the heat capacity anomaly. The thermal conductivity of the ternary systems were measured with an instantaneous heating wire conductometer in the temperature range from 233.15 to 343.15 K. All of the heat capacity and thermal conductivity results in temperature range between 221 and 350 K were correlated with temperature for practical applications. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Heat capacity; Phase transition; Thermal conductivity; 1,2-Ethanediol; Ethanol; Aqueous solution

1. Introduction

1,2-Ethanediol is an important chemical used in the petroleum and chemical industries. Its solutions are also an advanced working fluid in heat transfer equipment and widely used in the automobile, space and aviation industries. As a heat transfer medium, 1,2-ethanediol aqueous solutions may work at lower temperature with the addition of ethanol. Ethanol can also reduce the viscosity of 1,2-ethanediol in aqueous solution and improve its heat transfer performance.

Nikolaev and Rabinovich [1] and Knauth and Sabbah [2] have studied the low-temperature heat capacity and phase transition of pure 1,2-ethanediol by adiabatic calorimetry and DTA. One phase transition was observed for the solid–liquid phase change. No heat capacity anomaly was found in solid state. Zhi-cheng et al. [3,4] have investigated by adiabatic calorimetry heat capacities of 1,2-ethanediol aqueous solutions of different concentrations of 1,2-ethanediol in aqueous solutions over the temperature range between the melting and boiling point. They also measured the physical properties of 1,2-ethanediol aqueous solutions carefully, such as boiling point, melting point, viscosity and so on.

In this paper, the heat capacities of two ternary mixtures of 1,2-ethanediol, ethyl alcohol and water were measured with an adiabatic calorimeter in the temperature range from 80 to 350 K. The thermal conductivity of these mixtures were also determined with an instantaneous heating wire conductometer in the temperature range 233.15–343.15 K. All of the results of heat capacity and thermal conductivity in the

^{*}Corresponding author. Fax: +86-411-4691570.

E-mail address: tzc@ms.dicp.ac.cn (Z.-C. Tan)

^{0040-6031/00/\$ –} see front matter 2000 Elsevier Science B.V. All rights reserved. PII: \$0040-6031(99)00474-8

liquid state were fitted to polynomial equations by least squares method so as to provide information for heat transfer design in a space project in China.

2. Experimental

2.1. Sample preparation

Commercial analytical purity grade 1,2-ethanediol (0.998 mass fraction), ethanol (0.997 mass fraction) and twice-distilled water were used to prepare the samples. The sample mixtures were prepared gravimetrically by mixing the guest liquid of 1,2-ethanewith ethanol and distilled water diol The concentrations of 1,2-ethanediol, ethanol and distilled water in sample I were 0.195, 0.132 and 0.673 molar fraction (i.e. 0.40, 0.20 and 0.40 mass fraction) and 0.144, 0.194 and 0.662 molar fraction (i.e. 0.30, 0.30 and 0.40 mass fraction) for sample II, respectively. The mean molecular weight of sample I is 30.02 and 1.168 mol (35.0539 g) of the sample was used in the experiment. The mean molecular weight of sample II is 29.80 and 1.2185 mol (36.3174 g) of the sample was used in the experiment.

2.2. Adiabatic calorimeter

A low-temperature adiabatic calorimeter was used to measure the heat capacity of the sample. The calorimetric apparatus and measuring technique have been described in detail [5]. Briefly, it is an adiabatic calorimeter with intermittent energy inputs and temperature equilibration after each input. The calorimeter cell, with an internal volume of 42 ml, was made of gold plated silver with eight fins, and was provided with a re-entrant well for locating the heater and platinum resistance thermometer assembly. The calorimeter cell was sealed with a silicon rubber or Pb–Sn alloy gasket by a screw cover. The details about the calorimeter can be referred to the relevant literature.

2.3. Experimental procedures of heat capacity measurements

After filling the calorimeter cell with the sample, the cryostat was evacuated to a suitable vacuum. Cooling down the calorimeter from room temperature to liquid nitrogen at a desired cooling rate was controlled by adjusting the vacuum. In low-temperature region, the cooling rate decreased gradually and the liquid nitrogen temperature was obtained finally. From this temperature the calorimeter was ready for heat capacity measurements.

The heat capacity was measured by a step heating method that involved a determination of the heating energy and the corresponding temperature increment of the container with the specimen. In the first the calorimeter was heated to a desired temperature. After 5–10 min a steady temperature equilibration was attained and then the temperature and temperature drift rate of the calorimeter cell were recorded for 10 min with a 1 min interval. Next, another heating was carried out and the above steps were repeated until the upper limit of the temperature was reached.

In normal heat capacity region the temperature drift rate represents the native characteristics of a calorimeter. However in the phase transition from metastable state (e.g. glassy state) to an equilibrium state, the temperature drift rate (named spontaneous temperature drift rate due to an irreversible enthalpy relaxation from a frozen-in state that was disordered to an equilibrium state) may be significantly different from that in single phase region. In phase transition regions the $C_{p,m}-T$ values may not be true equilibrium values if the equilibration period was not extended long enough.

After a series of heat capacity measurements were carried out, the sample was kept in the cell at room temperature for 2 days. Then the next series of measurements were conducted.

2.4. Thermal conductivity measurement

The thermal conductivity of the samples were measured with an instantaneous heating wire conductometer (Model KDR-1B, made by the Chinese University of Science and Technology) in the temperature ranging from 233.15 to 343.15 K. Prior to the thermal conductivity measurements of the sample, methylbenzene was used as standard reference material to verify the reliability of the apparatus. The deviations of the measured results from those of literatures were less than $\pm 3\%$.

Fig. 1. Heat capacities of sample I (0.195 1,2-ethanediol+0.132 ethanol+0.673 water) at cooling rates of 0.1 K min⁻¹ (α — series I) and 10 K min⁻¹ (α — series II). (See text for discussion of peaks A, B, C and D.)

3. Results and discussion

3.1. Heat capacity

Two series of the experiments with different cooling rates of the sample were carried out to determine the heat capacities of the sample I in temperature range from 80 to 350 K. The cooling rate of series I was about 0.1 K min^{-1} and series II was about

10 K min⁻¹. The experimental results of the two series of measurements are shown in Fig. 1. The experimental molar heat capacities of the sample are listed in Table 1 in chronological order. One series of experiment was conducted for sample II. The result is shown in Fig. 2 and listed in Table 2.

Fig. 1 shows that the mixture of 1,2-ethanediol, ethanol and water exhibits complex phase transitions in solid state. A very broad heat capacity anomaly was

Fig. 2. Heat capacities of sample II (0.144 1,2-ethanediol+0.194 ethanol+0.662 water).

Table 1 Experimental molar heat capacities of the ternary mixture of sample I (0.195.1.2-ethanediol+0.132 ethanol+0.673 water)^a

Table 1 (Continued)

sample I (0.195 1,2-ethanediol $+$ 0.132 ethanol $+$ 0.673 water) ^a			<i>T</i> (K)	$C_{p,m} (\mathbf{J} \mathbf{K}^{-1} \operatorname{mol}^{-1})$	ΔT (K)
Т (К)	$C_{p,m}$ (J K ⁻¹ mol ⁻¹)	ΔT (K)	168.674	88.50	1.402
			169.958	92.35	1.352
Series I (cooling r	rate: 0.1 K min^{-1})		171.272	84.26	1.460
78.929	22.32	0.365	172.677	86.59	1.426
80.380	23.23	2.497	174.081	88.08	1.405
82.849	23.59	2.453	175.459	90.14	1.378
85.262	24.01	2.408	176.812	92.23	1.350
87.624	24.56	2.358	178.141	94.11	1.327
90.748	25.35	3.937	179.449	95.60	1.309
94.586	26.38	3.799	180.741	97.51	1.286
98.294	27.41	3.676	182.023	99.30	1.266
101.894	28.29	3.575	183.308	100.35	1.254
105.405	29.08	3.488	184.610	101.34	1.243
108.839	29.80	3.411	185.942	101.31	1.243
112.203	30.50	3.342	187.324	100.15	1.255
115.501	31.14	3.281	188.775	98.21	1.276
118.737	31.84	3.218	190.335	91.63	1.353
121.915	32.65	3.151	192.120	76.53	1.571
124.092	33.02	1.192	194.146	71.49	1.660
125.292	33.44	1.178	196.227	74.16	1.610
126.485	33.59	1.173	198.217	77.62	1.550
127.689	33.69	1.162	200.061	82.08	1.479
128.889	34.23	1.155	201.735	87.32	1.404
130.066	34.56	1.146	203.252	91.54	1.349
131.239	34.78	1.140	204.650	95.20	1.305
132.407	34.99	1.134	206.216	98.63	1.771
133.569	35.14	1.129	207.970	102.00	1.722
134.720	35.66	1.116	209.670	105.18	1.677
135.850	36.87	1.089	211.324	108.36	1.634
137.056	38.51	1.292	212.931	111.55	1.593
138.303	40.90	1.236	214.493	115.22	1.548
139.436	44.21	1.166	216.011	118.34	1.512
140.450	48.51	1.086	217.494	118.55	1.509
141.383	52.70	1.019	219.116	96.27	1.805
142.293	55.39	0.979	221.026	82.29	2.057
143.203	57.58	0.949	223.070	82.86	2.044
144.105	59.31	0.927	225.105	83.71	2.026
144.996	60.03	0.918	227.127	84.23	2.015
145.886	60.28	0.914	229.136	85.17	2.024
146.872	60.70	1.097	231.117	85.79	1.963
147.960	60.61	1.101	233.072	86.39	1.934
149.240	60.70	1.460	235.025	86.99	1.949
150.725	60.37	1.466	236.976	87.59	1.945
152.278	58.91	1.493	238.914	88.17	1.928
153.911	57.88	1.513	240.830	88.74	1.904
155.538	60.22	1.465	243.497	89.17	3.437
157.100	61.09	1.447	246.920	89.84	3.414
158.601	61.91	1.431	250.312	91.05	3.375
160.004	66.52	1.351	253.671	91.96	3.344
161.308	69.07	1.309	257.001	92.72	3.320
162.733	73.31	1.641	260.299	93.57	3.291
164.289	76.77	1.580	263.567	94.72	3.256
165.806	80.26	1.522	266.805	95.72	3.225
167.282	84.05	1.464	270.153	96.48	3.481

Table 1 (Continued)

Table 1 (Continued)

T (K)	$C_{p,m}$ (J K ⁻¹ mol ⁻¹)	ΔT (K)	<i>T</i> (K)	$C_{p,m}$ (J K ⁻¹ mol ⁻¹)	ΔT (K)
273.630	97.60	3.483	138.121	39.78	2.660
277.095	98.51	3.454	140.648	49.30	2.263
280.533	99.39	3.429	142.777	56.15	2.044
283.948	100.12	3.414	144.735	60.25	1.931
287.340	101.09	3.389	146.636	61.40	1.900
290.707	102.03	3.362	148.546	63.19	1.855
294.049	102.91	3.337	150.535	61.70	1.889
297.369	103.42	3.317	152.635	59.64	1.939
300.670	104.21	3.299	154.859	58.06	1.979
303.952	105.00	3.278	157.078	61.03	1.900
307.213	105.79	3.255	159.048	68.25	1.735
310.455	106.18	3.244	160.770	72.37	1.653
313.836	106.79	3.541	162.401	74.71	1.609
317.361	107.70	3.527	163,993	76.95	1.569
320.868	108.42	3.504	165.544	79.50	1.527
324.351	108.97	3.507	167.043	83.05	1.471
327.815	109.18	3.764	168.708	88.75	1.961
331.260	110.18	3.716	170.519	92.17	1.904
334.686	110.27	3.447	172.394	84.50	2.049
338.092	110.73	3.433	174.365	87.96	1.979
341.482	111.97	3.400	176.294	90.69	1.928
344.855	112.58	3.382	178.175	93.29	1.881
348.209	113.15	3.365	180.010	96.18	1.831
351.550	113.85	3.347	181.801	99.45	1.779
a			183.561	101.84	1.742
Series II (cooling	rate: 10 Kmin^{-1}	0.510	185.318	104.30	1.706
78.700	21.86	0.548	186.449	106.91	2.441
79.234	22.71	0.533	190.385	96.11	2.674
/9./64	22.80	0.531	193.777	78.77	3.159
80.293	23.07	0.526	197.653	73.22	3.350
80.818	23.07	0.525	201.657	78.16	3.167
81.409	23.04	0.660	205.249	90.66	2.792
82.064	23.20	0.655	208.165	102.85	2.513
82./13	23.30	0.649	210.679	105.21	2.466
84.296	23.47	0.840	213.059	109.91	2.373
84.280	23.74	0.831	215.339	117.07	2.239
85.485	24.17	1.504	217.538	119.34	2.200
87.037	24.44	1.343	220.062	88.96	2.829
89.270	25.01	2.937	223.001	82.41	2.784
92.177	25.05	2.870	225.984	83.44	2.826
95.010	20.29	2.807	228.935	84.84	2.937
97.776	27.11	2.750	231.854	85.99	2.902
100.465	27.39	2.090	234.741	87.11	2.871
103.133	28.20	2.639	237.587	88.08	2.821
100.041	29.20	1.977	240.406	88.93	2.814
109.988	29.08	1.950	243.223	89.17	2.815
111.713	30.20	1.924	246.032	89.44	2.808
115.019	30.08	2 210	248.822	90.29	2.783
110.360	31.20 22.69	3.219	251.590	91.14	2.760
119.300	52.08 22.62	5.124 2.102	254.336	91.93	2.738
122.703	32.02 33.32	5.105 2.056	257.061	92.60	2.720
123.049	55.25 22.66	3.030	259.764	93.48	2.697
120.902	33.00 34.60	2.019	262.446	94.33	2.676
132.103	34.09 26.20	2.948	265.109	95.02	2.658
155.195	50.20	2.034			

Table 1 (Continued)

Table 2

Experimental molar heat capacities of the ternary mixture of ble II (0.144 1.2-ethanediol+0.194 ethanol+0.662 water)^a

<i>T</i> (K)	$C_{p,m} (\mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1})$	ΔT (K)	sample II (0.144	lar heat capacities of the ternar 1,2-ethanediol+0.194 ethanol+0.60	y mixture of 62 water) ^a
267.753	95.78 96.72	2.638	<i>T</i> (K)	$C_{p,m} (\text{J K}^{-1} \text{ mol}^{-1})$	ΔT (K)
270.378	90.72	2.010	79 510	22 45661	0.255
272.965	97.30	2.002	78.312	22.43001	0.333
273.370	97.95	2.307	70.039	22.50	0.333
2/8.141	98.81	2.500	79.211	22.95	0.350
200.090	99.39	2.332	79.372	23.12	0.347
285.487	99.87	3.032	79.955	23.19	0.347
280.510	101.72	2.015	00.343 91.205	23.57	0.831
269.525	101.00	2,000	01.393	23.41	0.820
292.322	102.00	2.990	02.230 92.077	23.52	0.824
293.302	102.97	2.977	83.077	23.00	0.820
298.405	103.94	2.951	83.909	25.82	0.813
301.107	104.39	2.431	04.755	24.17	0.804
206.042	104.82	2.440	85.550	24.20	0.802
300.042	105.30	2.420	80.302	24.33	0.797
308.460	105.85	2.417	87.107	24.49	0.792
310.866	106.21	2.408	8/.966	24.56	0.789
312.870	106.39	1.629	88.757	24.96	0.779
314.494	107.12	1.619	89.673	25.29	1.037
316.109	107.24	1.618	90.712	25.44	1.031
317.718	107.67	1.611	91.741	25.64	1.023
319.323	102.27	1.606	92.757	25.78	1.017
320.924	108.27	1.609	93.761	26.11	1.007
322.522	108.58	1.607	94.755	26.69	0.989
323.942	108.82	1.250	95.940	26.99	1.390
325.185	109.06	1.248	97.317	27.21	1.379
326.425	109.27	1.246	98.679	27.64	1.361
327.038	109.49	1.244	100.024	27.89	1.349
328.884	109.70	1.241	101.330	28.25	1.334
330.112	109.91	1.239	102.674	28.54	1.322
331.345	110.12	1.237	103.981	28.95	1.307
332.377	110.55	1.235	105.275	29.27	1.294
333.807	110.55	1.233	106.560	29.48	1.285
335.034	110.73	1.231	107.830	29.77	1.274
330.200	110.94	1.229	109.104	29.98	1.200
337.485	111.12	1.227	110.303	30.54	1.255
338.700	111.54	1.220	111.013	30.53	1.245
339.927	111.52	1.224	112.856	30.72	1.238
341.140	111.70	1.222	114.091	31.08	1.220
342.364	111.88	1.220	115.319	31.29	1.219
343.583	112.06	1.218	116.540	31.63	1.208
344.797	112.24	1.217	117.754	31.87	1.199
346.004	112.43	1.215	118.963	32.36	1.185
347.744	112.07	2.380	120.167	32.63	1.177
550.015	112.97	2.307	121.30/	32.70 22.89	1.173
^a Mean molecular weight $M = 30.32$.			122.304	32.88 22.08	1.1/1
	-		123.700	33.U8 22.44	1.101
			124.938	55.44 22.50	1.131
			123.994	22.82 22.82	0.808
			120.004	33.03	0.805

127.731

128.594

129.449

130.283

34.25

34.57

34.75

35.02

0.795

0.790

0.786

0.781

Table 2 (Continued)

Table 2 (Continued)

T (K)	$C = (I K^{-1} mol^{-1})$	$\Delta T(\mathbf{K})$	T (K)	$C = (I K^{-1} mol^{-1})$	$\Delta T(\mathbf{K})$
		<u>а та с</u>	1 (R)	C _{p,m} (5 K mor)	21 (K)
131.113	35.38	0.775	162.0778	71.52	0.504
131.948	35.85	0.767	162.5901	72.68	0.498
132.775	36.64	0.754	163.1035	72.80	0.496
133.536	37.59	0.732	163.6189	72.42	0.498
134.494	39.85	0.708	164.252	72.17	0.754
135.226	40.59	0.698	165.010	72.14	0.754
135.914	42.30	0.676	165.791	/1.66	0.758
136.562	44.06	0.655	166.598	/1.1/	0.762
137.175	46.06	0.633	167.443	69.94	0.773
137.766	48.36	0.609	168.357	68./1	0.784
138.344	50.14	0.592	169.382	66.92	0.801
138.915	51.79	0.577	170.563	62.95	0.842
139.480	53.14	0.565	1/1.955	57.79	0.901
140.037	54.79	0.551	1/3.584	52.99	0.964
140.580	56.65	0.537	1/5.335	52.28	0.974
141.111	57.65	0.529	176.944	59.46	0.879
141.633	58.78	0.521	178.214	69.39	0.775
142.148	59.45	0.516	1/9.1/4	/6.6/	0.713
142.661	59.48	0.515	179.954	81.84	0.675
143.174	59.53	0.515	180.641	87.23	0.639
143.687	59.72	0.513	181.281	89.82	0.623
144.202	60.02	0.504	181.897	92.42	0.608
144.721	60.19	0.522	182.497	93.75	0.600
145.243	60.01	0.511	183.086	95.94	0.588
145.772	59.24	0.516	183.664	98.19	0.577
146.308	58.98	0.518	184.232	100.41	0.565
146.854	58.01	0.525	184.790	102.05	0.557
147.417	56.93	0.533	185.338	103.46	0.551
147.999	56.51	0.536	185.877	105.92	0.539
148.603	54.05	0.555	186.403	108.53	0.528
149.223	54.12	0.554	186.918	110.67	0.519
149.864	55.32	0.544	187.421	112.42	0.512
150.525	56.26	0.537	187.910	115.07	0.501
151.194	57.12	0.53	188.386	116.48	0.496
151.849	57.4	0.528	188.849	118.60	0.488
152.473	57.63	0.526	189.300	120.09	0.482
153.059	57.86	0.524	189.739	121.51	0.477
153.604	59.39	0.513	190.169	122.47	0.479
154.119	60.93	0.503	190.589	123.55	0.470
154.613	61.60	0.498	191.003	125.45	0.465
155.095	62.01	0.495	191.416	126.22	0.462
155.572	62.51	0.492	191.828	125.73	0.464
156.043	63.90	0.483	192.242	122.97	0.473
156.512	64.33	0.480	192.667	120.78	0.480
156.980	64.92	0.477	193.104	116.46	0.496
157.445	65.54	0.473	193.562	112.59	0.511
157.910	65.96	0.467	194.097	110.60	0.624
158.411	66.14	0.543	194.721	106.36	0.647
158.946	66.47	0.541	195.391	101.86	0.671
159.482	66.65	0.539	196.115	97.06	0.700
160.013	67.45	0.533	196.896	91.91	0.734
160.535	68.35	0.526	197.730	86.76	0.771
161.053	69.13	0.518	198.595	83.83	0.793
161.5662	69.97	0.511	199.461	83.86	0.793

Table 2 (Continued)

Table 2 (Continued)

<i>T</i> (K)	$C_{p,m}$ (J K ⁻¹ mol ⁻¹)	$\Delta T(\mathbf{K})$
200.293	85.66	0.779
201.083	86.30	0.774
201.852	87.38	0.765
202.736	88.52	1.006
203.734	90.19	0.990
204.718	92.44	0.969
205.852	92.81	1.292
207.128	94.59	1.271
208.377	97.36	1.239
209.601	99.18	1.219
210.801	101.68	1.193
211.973	103.60	1.173
213.123	105.72	1.152
214.250	108.67	1.124
215.355	110.98	1.104
215.895	112.70	0.702
216.577	114.91	0.689
217.229	117.25	0.675
217.860	118.48	0.668
218.478	118.70	0.667
219.083	120.13	0.659
219.678	121.17	0.655
220.832	122.75	0.653
220.864	107.63	0.683
221.494	96.19	0.729
222.175	89.85	0.772
222.913	84.58	0.813
223.414	82.55	0.923
224.527	82.76	0.961
225.313	82.97	0.825
227.895	83.69	2.935
230.874	84.39	2.896
233.635	85.21	2.871
236.444	86.46	2.836
239.255	87.65	2.809
242.152	88.19	2.792
244.947	88.93	2.771
247.635	90.33	2.733
250.394	91.03	2.714
253.142	91.62	2.697
255.722	92.08	2.684
258.521	92.59	2.670
261.181	93.03	2.657
263.818	93.60	2.641
266.436	94.42	2.620
209.034	95.17	2.601
2/1.610	96.02	2.577
274.240	90.30	2.726
270.948	97.54	2.712
279.028	97.99	2.691
282.430	98.57	2.960
285.352	99.69	2.930
288.249	100.08	2.917
291.120	101.11	2.889

T (K)	$C_{p,m} (\mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1})$	ΔT (K)
293.968	101.71	2.874
296.801	102.16	2.860
299.616	103.00	2.837
302.407	103.66	2.821
305.174	104.27	2.806
307.921	104.86	2.791
310.647	105.37	2.779
313.356	105.70	2.771
316.358	106.36	3.380
319.650	107.16	3.367
322.918	107.82	3.349
326.150	109.19	3.313
329.349	109.50	3.305
332.520	109.83	3.293
335.654	110.69	3.271
338.753	111.50	3.251
341.826	112.25	3.245
344.861	112.90	3.218
347.801	113.01	3.167
350.649	113.79	3.148
353.517	114.21	3.185

^a Mean molecular weight M = 29.80.

found from 130 to 240 K in solid state. Four peaks labelled A, B, C and D were observed at T=217.5, 186, 170 and 149 K, respectively. The peak temperatures were considered to be the corresponding phase transition temperatures or melting point.

Peak A was confirmed to be the melting peak from solid to liquid state. It was difficult to determine the structures of the solid at temperatures between peaks A and B, B and C, C and D and below peak D. The behaviour of four peaks in series I was similar to that in series II and they were not influenced by the cooling rate of the sample. However, the equilibration period had a little effect on the experiment results. The equilibration period was 7 min for series I and 5 min for series II. In phase transition regions, shorter equilibration period may cause false equilibration and the heat capacity values are likely not true equilibrium values.

From the above experimental results, at least three (A, B, C) of the peaks appeared in the present results should be attributed to the fusion of three phases, i.e. water, 1,2-ethanediol, and ethanol, respectively. Indeed, peak areas of these peaks seem to be proportional to the expected values (sample I for example) of

enthalpy of fusion for each component material as follows:

Material	Expected value	Experimental value
Water	$6.002 \text{ kJ mol}^{-1}$ ×0.673 mol=4.039 kJ	3.975 kJ
1,2-Ethanediol	$11.597 \text{ kJ mol}^{-1} \times$ 0.195 mol=2.261 kJ	2.304 kJ
Ethanol	$4.814 \text{ kJ mol}^{-1} \times 0.132 \text{ mol}=0.635 \text{ kJ}$	0.683 kJ

In addition, these peaks appeared near the melting point of these materials and expected depressions of freezing points.

Experimental heat capacity and corresponding temperature drift during equilibration period are shown in Fig. 3 for sample I in series I. Haida et al. [6] have reported plural glass-transition phenomena of ethanol in their study. Anomalous temperature drifts were observed in the measurement of heat capacities of hexagonal ice [7]. This is the characteristic of the enthalpy-relaxation phenomenon and implies that there is a glassy state in hexagonal ice. The above information reminded us that the mixture of 1,2-ethanediol, ethanol and water might exhibit glassy behaviour in the solid state. In Fig. 3 the spontaneous temperature drift rates of the sample are plotted against the temperature. The rates were observed during each equilibration period between each energy input. A series of exothermic followed by endothermic temperature drifts appeared in the temperature range 122–220 K. This type of relaxational heat capacity anomaly is one of the typical characteristic features of the glass transition. Accurate assignment of the peaks in the heat capacity curve should be established in the future.

Fig. 2 shows similar result to that of sample I. In the heat capacity measurements of sample II, the equilibration period was extended to 10 min. Also four transition peaks were observed at T=144, 163, 191 and 220.8 K.

The experimental results of heat capacity of the specimens in temperature range between 221 and 350 K (liquid state) resulted in the following correlation equations.

$$C_{p,m} = -23.194 + 0.626T - 6.761 \times 10^{-4}T^2$$
(for sample I),

$$C_{p,m} = -5.625 + 0.491T - 4.298 \times 10^{-4}T^2$$
(for sample II),

where, T (K) is the temperature and $C_{p,m}$ (J K⁻¹ mol⁻¹) is the heat capacity.

Fig. 3. Heat capacities (— —) of sample I (0.195 1,2-ethanediol+0.132 ethanol+0.673 water) in series I and corresponding spontaneous temperature drift rates (— o —).

Table 3

Thermal conductivity of the ternary mixture of sample I (0.195 1,2-ethanediol+0.132 ethanol+0.673 water) and sample II (0.144 1,2-ethanediol+0.194 ethanol+0.662 water)

<i>T</i> (K)	$\lambda (W m^{-1} K^{-1})$
Sample I	
233.15	0.291
238.15	0.298
243.15	0.305
248.15	0.312
253.15	0.320
258.15	0.327
263.15	0.334
268.15	0.341
273.15	0.349
283.15	$0.363 (0.460)^{a}$
303.15	0.392 (0.490) ^a
323.15	$0.421 (0.511)^{a}$
343.15	$0.450 (0.524)^{a}$
Sample II	
233.15	0.276
238.15	0.284
243.15	0.291
248.15	0.298
253.15	0.306
258.15	0.313
263.15	0.320
268.15	0.328
273.15	0.335
283.15	0.350 (0.452) ^a
303.15	$0.379 (0.481)^{a}$
323.15	$0.409 (0.501)^{a}$
343.15	$0.438 (0.514)^{a}$

^a The values given in brackets are theoretical values.

3.2. Thermal conductivity

The thermal conductivity λ of the mixture of 1,2-ethanediol, ethanol and water was measured in temperature range from 233.15 to 343.15 K. The experimental results are listed in Table 3 and the equations to correlate the experimental results may

be expressed as

$$\begin{split} \lambda &= -4.679 \times 10^{-2} + 1.450 \times 10^{-3}T \\ \text{(for sample I),} \\ \lambda &= -6.687 \times 10^{-2} + 1.470 \times 10^{-3}T \\ \text{(for sample II),} \end{split}$$

where, T(K) is the temperature and $\lambda (W m^{-1} K^{-1})$ is the thermal conductivity. These equations can be extrapolated down to T=221 K or up to 350 K.

Usually the conductivity of a ideal mixture can be derived from its pure components. The theoretical values of the sample conductivity are also listed in Table 3 for comparison. It is obvious that the theoretical values are higher about 22.6–14.1% than the experimental results and the data below 273.15 K are difficult to obtain theoretically. Therefore, the present experiment has provided an important information about the sample conductivity for practical application.

This work was supported financially by the National Nature Science Foundation of China under the contract NSFC No. 29773048.

References

- P.N. Nikolaev, I.B. Rabinovich, Zh. Fiz. Khim. 41 (1967) 2191–2193.
- [2] P. Knauth, R. Sabbah, Can. J. Chem. 68 (1990) 713-734.
- [3] Tan Zhi-cheng, Zhou Li-xing, Chen Su-xia, Li Xiang-yun, Sun Yi, Yin An-xue, Chinese Sci. Bull. 24 (1979) 835–839 (in Chinese).
- [4] Tan Zhi-cheng, Shen Hui-hua, Chen Su-xia, Chem. Eng. 8 (1983) 41–50 (in Chinese).
- [5] Tan Zhi-cheng, Zhou Li-xing, Chen Su-xia, Yin An-xue, Sun Yi, Ye Jin-chun, Wang Xiu-kun, Scientia Sinica B 26 (1983) 1014–1026.
- [6] O. Haida, H. Suga, S. Seki, J. Chem. Thermodyn. 9 (1977) 1133–1148.
- [7] O. Haida, T. Matsuo, S. Seki, J. Chem. Thermodyn. 6 (1974) 815–825.